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Abstract 
This paper presents a computational methodology based on 
Genetic Algorithms with Genotype Editing (GAE) for 
investigating the role of RNA editing in dynamic environments. 
This model is constructed based on several genetic editing 
characteristics that are gleaned from the RNA editing system as 
observed in several organisms. We have previously expanded the 
traditional Genetic Algorithm (GA) with artificial editing 
mechanisms (Rocha, 1995, 1997), and studied the benefits of 
including straightforward Genotype Editing in GA for several 
machine learning problems (Huang and Rocha, 2003, 2004). We 
show that the incorporation of genotype editing provides a means 
for artificial agents with genetic descriptions to gain greater 
phenotypic plasticity. Artificial agents use genotype edition to 
their advantage by linking it to environmental context. The ability 
to link changes in the environment with editing parameters gives 
organisms an adaptive advantage as genotype expression can 
become contextually regulated. The study of this RNA editing 
model in changing environments has shed some light into the 
evolutionary implications of RNA editing. We expect that our 
methodology will both facilitate determining the evolutionary 
role of RNA editing in biology, and advance the current state of 
research in Evolutionary Computation and Artificial Life. 

1. RNA Editing 

Evidence for the important role of non-protein coding 
RNA (ncRNA) in complex organisms (higher eukaryotes) 
has accumulated in recent years. “ncRNA dominates the 
genomic output of the higher organisms and has been 
shown to control chromosome architecture, mRNA 
turnover and the developmental timing of protein 
expression, and may also regulate transcription and 
alternative splicing.” (Mattick, 2003, p 930). 

RNA Editing (Benne, 1993; Bass, 2001), a process of 
post-transcriptional alteration of genetic information, can 
be performed by ncRNA structures (though it can also be 
performed by proteins). The term initially referred to the 
insertion or deletion of particular bases (e.g. uridine), or 
some sort of base conversion. 

The most famous RNA editing system is that of the 
African Trypanosomes (Benne, 1993; Stuart, 1993). Its 
genetic material was found to possess strange sequence 
features such as genes without translational initiation and 
termination codons, frame shifted genes, etc. Furthermore, 
observation of mRNA’s showed that many of them were 

significantly different from the genetic material from 
which they had been transcribed. These facts suggested 
that mRNA’s were edited post-transcriptionally. It was 
later recognized that this editing was performed by guide 
RNA’s (gRNA’s) coded mostly by what was previously 
thought of as non-functional genetic material (Sturn and 
Simpson, 1990). In  this particular genetic system, gRNA’s 
operate by inserting, and sometimes deleting, uridines. To 
appreciate the effect of this edition let us consider Figure 1. 
The first example (Benne, 1993, p. 14) shows a massive 
uridine insertion (lowercase u’s); the amino acid sequence 
that would be obtained prior to any edition is shown on top 
of the base sequence, and the amino acid sequence 
obtained after edition is shown in the gray box. The second 
example shows how, potentially, the insertion of a single 
uridine can change dramatically the amino acid sequence 
obtained; in this case, a termination codon is introduced. 

~ ~ 

Figure 1. U-insertion in Trypanosomes’ RNA 

The importance of RNA Editing is thus unquestionable, 
since it has the power to dramatically alter gene 
expression: “cells with different mixes of (editing 
mechanisms) may edit a transcript from the same gene 
differently, thereby making different proteins from the 
same opened gene.” (Pollack, 1994, P. 78). It is important 
to retain that a mRNA molecule can be more or less edited 
according to the concentrations of the editing operators it 
encounters. Thus, several different proteins coded by the 
same gene may coexist in an organism or even a cell, if all 
(or some) of the mRNA’s obtained from the same gene, 
but edited differently, are meaningful to the translation 
mechanism. 



If the concentrations of editing operators can be linked 
to environmental contexts, the concentrations of different 
proteins obtained may be selected accordingly, and thus 
evolve a system which is able to respond to environmental 
changes without changes in the major part of its genetic 
information -- one gene, different contexts, different 
proteins. This type of phenotypic plasticity may be 
precisely what the Trypanosome parasites have achieved: 
control over gene expression during different parts of their 
complex life cycles. 

“In mammalian genomes, gene duplication followed 
by separate evolution of the two copies would be a 
more obvious way of producing closely related 
proteins in regulatable amounts. RNA editing, 
however, does provide the opportunity to introduce 
highly specific, local changes into only some of the 
molecules. [...I It could be reasoned that somehow this 
would be more difficult to achieve via gene 
duplication, since independently accumulating 
mutations would make it harder to keep the remainder 
of the two sequences identical” (Benne, 1993, p. 22) 

agents, each defined by a genotype string 
(chromosome) of symbols from a small alphabet. 
2. Evaluate each agent’s (phenotype) fitness. 
3. Repeat until I offspring agents have been created. 

a. select a pair of parent agents for mating; 
b. apply crossover operator to genotype string; 
c. apply mutation operator to genotype string. 

population. 
4. Replace the current population with the new 

5. Go to Step 2 until terminating condition. 

Thus, RNA editing may be more than just a system 
responsible for the introduction of environmentally 
regulated gene expression, but also a system that may 
allow the evolution of different proteins constrained by the 
same genetic string. In other words, even though one gene 
may produce different mRNA’s (and thus proteins), the 
latter are not allowed heritable variation. What is 
inheritable, and subjected to variation, is the original non- 
edited gene, which is ultimately selected and transmitted to 
the offspring of the organism (Rocha, 1995; 1997). 

The role of RNA editing in the development of more 
complex organisms has been shown to be important. 
Lomeli et al. (1994) discovered that the extent of RNA 
editing affecting a type of receptor channels responsible 
for the mediation of excitatory postsynaptic currents in the 
central nervous system, increases in rat brain development. 
As a consequence, the kinetic aspects of these channels 
differ according to the time of their creation in the brain’s 
developmental process. Another example is that the 
development of rats without a gene (ADARI ) known to be 
involved in RNA editing, terminates midterm (Wang et al., 
2000). This showed that RNA Editing is more prevalent 
and important than previously thought. RNA editing 
processes have also been identified in mammalian brains 
(Simpson and Emerson, 1996), including human brains 
(Mittaz et al., 1997). More recently, Hoopengardner et al. 
(2003) found that RNA editing plays a central role in 
nervous system function. Indeed, many edited sites recode 
conserved and functionally important amino acids, some of 
which may play a role in nervous system disorders such as 
epilepsy and Parkinson Disease. 

2. Introducing Editing in Genetic Algorithms 

Genetic Algorithms (GA) (Holland, 1975) have been 
used as computational models of natural evolutionary 
systems and as adaptive algorithms. for solving 
optimization problems. GA operate on an evolving 
population of artificial organisms, or agents. Each agent is 
comprised of a genotype (encoding a solution to some 
problem) and a phenotype (the solution itself). Evolution 
occurs by iterated stochastic variation of genotypes, and 
selection of the best phenotypes in an environment 
according to how well the respective solution solves a 
problem (or fitness function). 

Table 1 depicts the process of a simple genetic 
algorithm. 

the 
description of a solution (the Genotype) from the solution 
itself (the Phenotype): variation is applied solely to the 
descriptions, while the respective solutions are evaluated, 
and the whole selected according to this evaluation. 
Nonetheless, one important difference between 
evolutionary computation and biological organisms, lies 
precisely on the relation between descriptions and 
solutions, between Genotype and Phenotype. In GA, 
typically, the relation between the two is linear and direct: 
one description, one solution. While in biological 
organisms there exists a multitude of processes, taking 
place between the transcription of a gene and its expression 
and subsequent development into a phenotype, responsible 
for the establishment of an uncertain, contextually 
regulated relation, between Genotype and Phenotype. 

In other words, the same genotype will not always 
produce the same phenotype; rather, many phenotypes can 
be produced by one genotype depending on changes in the 
environment. For instance, in biological genetic systems 
with RNA editing, before a gene is translated into the 
space of proteins it may be altered through interactions 
with other types of molecules, namely RNA editors such as 
gRNA’s. 

If the effects of changing environmental context 
affecting gene expression within an individual can be 
harnessed and used to its selective advantage in a changing 



environment, then we can say that such an individual has 
achieved a degree of control over its own genetic 
expression. 

In analogy with the process of RNA Editing, Rocha 
(1995; 1997) proposed an expanded GA with stochastic 
edition of genotypes (chromosomes), prior to translation 
into phenotypes. Here we present novel experiments to 
show how this GA with Genotype Editing can be 
successfilly used to model the environmentally-regulated 
control of gene expression achieved by RNA Editing in 
real organisms. 

Genotype Editing (Rocha, 1995; Huang and Rocha, 
2003, 2004) is implemented by a set of editors with 
different editing functions, such as insertion or deletion of 
symbols in the original chromosomes. Before 
chromosomes can be translated into the space of solutions, 
they must “pass” through successive layers of editors, 
present in different concentrations. In each generation, 
each chromosome has a certain probability (given by the 
concentrations) of encountering an editor in its layer. If an 
editor matches some subsequence of the chromosome 
when they encounter each other, the editor’s function is 
applied and the chromosome is edited. The detailed 
implementation of the simplest GA with Edition (GAE) is 
described in the following: 

The GAE model consists of a family of r m-bit strings, 
denoted as (E , ,  E,, ..., E,), which is used as the set of 
editors for the chromosomes of the agents in a GA 
population. The length of the editor strings is assumed 
much smaller than that of the chromosomes: m << n, 
usually an order of magnitude. An editor E ,  is said to 
match a substring, of size m, of a chromosome, S, at 
position k if e ,=  s +,, i=1,2, ..., m, 1 = k = n-m, where 
eland s,denote the i-th bit value of E ,  and S, 
respectively. For each editor E , there exists an associated 
editing function F, that specihes how a particular editor 
edits the chromosomes: when the editor matches a portion 
of a chromosome, a number of bits are inserted into or 
deleted from the chromosome. 

For instance, if the editing function of editor E ,  is to 
add one randomly generated allele at St+  +,when E, 
matches S at position k, then all alleles of S From position 
k+m+I to n-I are shifted one position to the right (the 
allele at position n is removed). Analogously, if the editing 
function of editor E is to delete an allele, this editor will 
instead delete the aliele at St+m+, when E, matches S at 
position k. All the alleles after position k+m+ I are shifted 
in the inverse direction (one randomly generated allele is 
then assigned at position n). 

Finally, let the concentration of the editor family be 
defined by ( V  ,v,, ..., v r ) .  This means that the 
concentration of. editor E, IS denoted by and the 
probability that S encounters E is thus given by v, . With 
these settings, the algorithm for the GA with genotype 
editing is essentially the same as the regular GA, except 
that step 2 in Table 1 is now more complicated and 
redefined as: 

“For each individual in the GA population, apply each 
editor E with probability (i.e., concentration). If 
E ,  matches the individual’s Chromosome S, then edit 
S with editing function F, and evaluate the resulting 
individual’s fitness.” 

It is important to notice that the “post-transcriptional” 
edition of genotypes is not a process akin to mutation, 
because editions are not inheritable. Just like in biological 
systems, it is the unedited genotype that is reproduced. 

It is also important to retain that just like an mRNA 
molecule may be edited i n  different degrees according to 
the concentrations of editing operators i t  encounters, in the 
GAE the same chromosome may be edited differently 
because the editor concentration is a stochastic parameter 
that specifies the probability of a given editor encountering 
a chromosome. Thus, if a chromosome is repeated in the 
population, it may actually produce different solutions (or 
phenotypes). This mirrors what happens with RNA editing 
in biological organisms where, at the same time, several 
different proteins coded by the same gene may coexist. 

In  (Huang and Rocha, 2003,2004), we have conducted a 
systematic study of the GAE in static environments to 
study if there are any evolutionary advantages of genotype 
editing, even without control of environmental changes. 
We demonstrated how the genotype editing can improve 
the GA‘s search performance by suppressing the effects of 
hitchhiking (Forrest and Mitchell, 1993). We have also 
showed that editing frequency plays a critical role in the 
evolutionary advantage provided by the editors -- only a 
moderate degree of editing processes facilitates the 
exploration of the search space. ’Therefore, one needs to 
choose proper editor parameters to avoid over or under- 
editions in order to develop more robust GAS. Here, we 
extend our study of the GAE to dynamic problems by 
linking concentrations of editors to environmental states 
(or contexts) - thus allowing editor concentrations to serve 
as a control switch for environmental changes. 

. 

3. Evolution in Dynamic Environments 

How rapid is evolutionary change, and what determines 
the rates, patterns, and causes of change, or lack thereof’? 
Answers to these questions can tell us much about the 
evolutionary process. The study of evolutionary rate in the 
context of GA usually involves defining performance 
measures that embody the idea of rate of adaptation, so that 
its change over time can be monitored for investigation. 

In this paper, two evolutionary measures, the maximum 
fitness and the population fitness at each generation, are 
employed.’ To understand how Genotype Editing works in  

~ 

The maximum fitness is the fitness of the best individual 
in the current population; the population fitness here is 



the GAE model, we employ a testbed, the small Royal 
Road S1 (Huang and Rocha, 2003) due to its simplicity for 
tracing the evolutionary advancement. 

Table 2. Small royal road function S1 
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Table 2 illustrates the schematic of the small Royal 
Road function SI. This function involves a set of schemata 
S = ( S, ,..., ) and the fitness of a bit string (chromosome) 
x is defined as 

F ( x )  = c C P , ,  (XI, 
S , E S  

where each c, is a value assigned to the schema S, as 
defined in the table; (x) is defined as 1 if x is an 
instance of SI and 0 othehise. In this function, the fitness 
of the global optimum string (40 1's) is 10*8 = 80. 

As a step towards the study of linking editors' 
concentrations with environmental contexts, we introduce 
another testbed (fitness landscape) in which each schema is 
comprised of all 0's and the other parameters remain the 
same as used in S1. The fitness landscapes consisting of 
schemata of all 1's and all 0's are called L1 and LO, 
respectively. These two testbeds are maximally different in 
the configurations of their fitness landscapes. By 
oscillating these two landscapes, we are able to investigate 
the maximal effects of genotype editors in GAE. 

Table 3. Parameters of the five editors 

The GAE experiments conducted in this section are 
based on a binary tournament selection, one-point 
crossover and mutation rates of 0.7 and 0.005, 
respectively; population size is 40 for each of 50 GAE 
runs. A family of 5 editors, CI, is randomly generated, 
with editor length selected in the range of 2 to 4 bits (see 
(Huang and Rocha, 2003, 2004) for a set of guidelines for 
parameter choices of the editors). Table 3 shows the 
corresponding parameters generated for each editor in 
family C 1 : length, alleles, concentration and editing 

defined as the value obtained by averaging the fitness of all 
the individuals in the current population. 

function. For example, editor 3 is a bit-string of length 4 
(0101); its concentration, or the probability that a 
chromosome will encounter this editor is 0.7302; its 
editing function is to delete 1 bit, meaning that this editor 
deletes 1 chromosome allele at the position following the 
chromosome substring that matches the editor's string. 

Figure 2.a and 2.b display the averaged maximum 
fitness and averaged population fitness for the GAS and the 
GAEs on static environments LO and L I ,  respectively.2 In 
the figure, LO (GA) and LI (GA) denote the results 
obtained for the traditional GA on landscapes LO and L1, 
respectively. LlCl  (GAE) denotes a GAE with the family 
of editors C1 shown in Table 3, applied to the LI 
landscape. LOCI (GAE) denotes a GAE with the same 
family of editors C1 applied to the LO landscape. 

(a ) 
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Figure 2. Evolutionary measures on static landscapes 

One can see that the family of editors C1 facilitates the 
population's adaptation on L1 with respect to the 
maximum fitness and population fitness, in comparison 
with the traditional GA without edition on the same 
landscape. However, C1 is by no means beneficial for the 
GAE on landscape LO. 

To enhance the performance of the GAE population on 
LO, we produced another editor family, CO, whose only 
difference from C1 is a new set of editor concentrations, 
(0.31, 0.062, 0.989, 0.002, 0.05}, with all other editor 
parameters remaining the same as in Table 3. The results 
in Figure 2 show that the GAE with CO now performs 
much better on LO than with C I .  \Ve also notice that the 
LlCl and LOCO GAE clearly outperform the GA without 
edition on L1 and LO respectively. 

The value of the averaged maximum fitness measure is 
calculated by averaging the fitness of the best individuals at each 
generation for all 50 runs, where the vertical bars overlaying the 
measure curves represent the 95-percent confidence intervals. 
This applies to all the results obtained for the measures employed 
in this paper. 



Consider now a dynamic environment which oscillates 
periodically between the landscapes LI and LO. This 
oscillation models an environment with recurring dramatic 
changes in conditions. We know that some biological 
organisms, namely parasites that go through dramatic 
environmental changes, use the edition of mRNA 
molecules to their advantage, by linking the process of 
edition to environmental context. The ability to link 
changes in the environment with internal parameters such 
as concentrations of editing agents, is one of the 
mechanisms that can be used to (contextually) regulate 
gene expression (Mattick, 2003) with potential adaptive 
advantages (Rocha, 1995). 

.. 

Figure 3. Evolutionary measures on dynamic 
landscapes 

Figure 3 depicts our modeling of this process with the 
oscillation of landscapes LI and LO, at every 100 
generations. Several scenarios are tested: 

L1 LO. Landscapes oscillate without genotype 
edition. The population evolves solely according to 
the traditional GA. 
LlCl LOCl. Landscapes oscillate with genotype 

edition, but edition is always implemented with 
family CI. 
LICOLOCO. Same as above but with family CO. 
LlCl LOCO. Landscapes oscillate with edition, 

but the family of editors changes with the 
environment: family C 1 operates when landscape 
LI is in place, and CO operates with LO. 
LIC,,dLOC,d. Landscapes oscillate with 
genotype edition, but edition is always 
implemented with family Crnnd. This is essentially 
the same as LICILOCI, except that the 
concentrations of editors are randomly generated 

at the start of each GAE run, and all other 
parameters are kept the same as in table 3. 

The results for LlClLOCO show that the linking between 
the editor concentrations and environmental contexts (Le., 
the linking between L I and C I ,  iriid between LO and CO) 
indeed provides adaptive advantages on the oscillating 
landscapes. 

We also notice that CO always advances the adaptation 
of the GAE’s population even when the two landscapes 
oscillate (i.e., the results for LICOLOCO). This means that 
family CO is good at editing chromosomes in both 
landscapes. The results obtained for LlClLOCO and 
LICOLOCO show that genotype editing can lead to 
advantageous phenotypic plasticity in two ways to cope 
with dynamic environments: ( I  ) by linking editors’ 
concentrations with the environment (the case of 
LICILOCO), or (2) by employing editors which can 
produce chromosomes encoding good solutions in both 
landscapes (LI COLOCO). 

We do notice, however, that strategy 1 provides a 
quicker response immediately after the environment 
changes from LO to LI. In figure 3, we can see that when 
this change occurs, the maximum fitness of LICOLOCO 
suffers a larger setback than that of LICILOCO; that is, the 
population of the lirst needs to cornpletely re-adapt to the 
new environment, whereas the population of the second 
contains some elements already with moderate fitness 
when the landscape changes. 

A microscopic inspection shows that in the case of 
LICILOCO, at generation 199, the chromosome of one 
individual of fitness 60 is defined by substring {O,l,O,l,O} 
at the position of schema SI. When the landscape oscillates 
from LO to LI at generation 200, this individual undergoes 
some edition which results in these alleles being altered to 
{ l , l , l , l , l } .  This individual thus acquires a fitness amount 
of IO from building block 3. This situation is relatively 
typical in LICILOCO; yet in LICOLOCO, since more 
individuals converge to all 0’s at generation 199, it is 
therefore more difficult for the population individuals to be 
able to acquire corresponding building blocks at generation 
200 simply by genotype edition. All this means that under 
strategy 2, the GAE evolves chromosomes which produce 
fair solutions in both landscapes, but which are edited 
differently accordingly. Therefore, the same chromosomes 
may exist i n  both landscapes, whereas in the case of 
strategy 1, CO seems to facilitate the evolution of new 
chromosomes every time the landscape changes. 

4. Conclusion and Future Work 

This paper presents our computational methodology 
using Genetic Algorithms with Genotype Editing for 
investigating the role of RNA editing in dynamic 
environments. Based 011 swcral genetic editing 
characteristics that are gleaned from the RNA editing 
system, we show that the incorporation of editing 



mechanisms indeed provides a means for artificial agents 
with genetic descriptions to gain greater phenotypic 
plasticity. By linking changes in the environment with 
internal parameters such as concentrations of editors, the 
artificial agents can use genotype edition to their 
advantage, as gene expression can become contextually 
regulated, such ability thus gives organisms an adaptive 
advantage. In a nutshell, the results obtained have provided 
the following insights: 

There are two strategies for the artificial organisms with 
genotype edition to produce phenotypic plasticity to cope 
with environmental changes: (1) by using different families 
of editors for different environmental demands, or (2) by 
employing a single family of editors that allows the 
evolutionary process to cope well with a changing 
environment. 

We have thus far studied the linking of editor families 
with different concentrations to external contextual 
changes. In future work, we intend to allow the family of 
editors and the agents’ genotype to co-evolve, so that the 
artificial agents can discover proper editor concentrations 
to adapt to changing environments. Since there are several 
internal editor parameters involved in an editing system, 
such as the size of the editor family, editor length and 
editor functions, in addition to the investigation of editor 
concentrations, our future work is also going to study the 
effects of linking other parameters with external 
environments. Since the length of oscillation period is 
expected to be another critical parameter that will affect 
how well the GAE’s population adapts to changing 
environments, we will also study the effects of oscillation 
periods. With a systematic study on these editor 
parameters, our hope is to gain a deeper understanding of 
the role of RNA Editing in nature and also to design robust 
evolutionary computation algorithms for complex, real- 
world tasks (as we have done in Huang and Rocha 2003, 
2003). 
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